A combinatorial problem involving monomial ideals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combinatorial proof of Gotzmann's persistence theorem for monomial ideals

Gotzmann proved the persistence for minimal growth for ideals. His theorem is called Gotzmann’s persistence theorem. In this paper, based on the combinatorics on binomial coefficients, a simple combinatorial proof of Gotzmann’s persistence theorem in the special case of monomial ideals is given. Introduction Let K be an arbitrary field, R = K[x1, x2, . . . , xn] the polynomial ring with deg(xi)...

متن کامل

Monomial Ideals

Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.

متن کامل

Combinatorial Characterizations of Generalized Cohen-macaulay Monomial Ideals

We give a generalization of Hochster’s formula for local cohomologies of square-free monomial ideals to monomial ideals, which are not necessarily square-free. Using this formula, we give combinatorial characterizations of generalized Cohen-Macaulay monomial ideals. We also give other applications of the generalized Hochster’s formula.

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

Monomial Ideals and Duality

These are lecture notes, in progress, on monomial ideals. The point of view is that monomial ideals are best understood by drawing them and looking at their corners, and that a combinatorial duality satisfied by these corners, Alexander duality, is key to understanding the more algebraic duality theories at play in algebraic geometry and commutative algebra. Sections written so far cover Alexan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1995

ISSN: 0022-4049

DOI: 10.1016/0022-4049(94)00131-3